• About Us
  • All Products
  • Applications
  • Contact Us
  • Sign In or Create an Account
  • Cart
Search
0 Items
  • ALL Products
  • About CHLORINE DIOXIDE - ClO2
  • ClO2 Effective Against
  • Disinfectant Comparison
  • Theraworx Protect
  • How To Videos
  • Prokure V & Food
  • Restoration
  • INFECTIOUS CONTROL APPLICATION TEAMS
  • Training
  • Education
  • CLIENTS
  • FAQ
  • EPA Label - SDS
  • Prokure Kit
  1. Home
  2. About CHLORINE DIOXIDE - ClO2

About CHLORINE DIOXIDE - ClO2

Chlorine Dioxide             BUY NOW
Liquid Deodorizer, Disinfectant, Fungicide and General-Purpose Antimicrobial


(EPA Reg# 87508-3-89334) is listed by the EPA to use against the SARS CoV-2, the virus responsible for the COVID-19 (when used on hard, non-porous surfaces and in accordance to the coronavirus directions on the label)


Chlorine dioxide is a neutral chlorine compound with the formula ClO2. Although similar in name to chlorine, chlorine dioxide is very different from elemental chlorine, both in its chemical structure and in its behavior (think carbon v. carbon dioxide). One of the most important qualities of chlorine dioxide is its high solubility in water, especially in cold water. Chlorine dioxide does not hydrolyze (or undergo a chemical breakdown reaction) when it enters water. Instead, chlorine dioxide remains intact as a dissolved gas in water. In comparison, chlorine dioxide is approximately 10 times more soluble in water than chlorine.

 

The molecule ClO2 has an odd number of valence electrons, and therefore, it is a paramagnetic radical. Its electronic structure has long baffled chemists because none of the possible Lewis structures is very satisfactory. In 1933, L. O. Brockway proposed a structure that involved a three-electron bond. Chemist Linus Pauling further developed this idea and arrived at two resonance structures involving a double bond on one side and a single bond plus three-electron bond on the other. In Pauling’s view the latter combination should represent a bond that is slightly weaker than the double bond. In molecular orbital theory this idea is commonplace if the third electron is placed in an anti-bonding orbital. Later work has confirmed that the highest occupied molecular orbital is indeed an incompletely-filled anti-bonding orbital.  


Competitive Advantages Compared to other Chemicals

ClO2 in Action

Acidification of Chlorite

5 ClO2 + 4H+ ? 4 ClO2 + 2 H2O + Cl-

 

Oxidation of Chlorite by Chlorine

2 NaClO2 + Cl2 ? 2 NaCl + ClO2

 

Oxidation of Chlorite by Persulfate

2 NaClO2 + Na2S2O8 ? 2 ClO2 + 2 Na2SO4

 

Action of Acetic Anhydride on Chlorite

2 NaClO2 + (CH3CO)2O + H2O ? ClO2 + NaCl + CH3COOH + CH3COONa + H2

 

Reduction of Chlorates by Acidification in the Presences of Oxalic Acid

2 HClO3 + H2C2O4 + H2O ? 2 ClO2 + 2 CO2 + 2 H2O

 

Reduction of Chlorates by Sulfurous Anhydride

2 NaClO3 + H2SO4 + SO2 ? 2 ClO2 + 2 CO2 + 2 NaHSO4



Smaller is Better!



ClO2 is a very small molecule, e.g., it can penetrate into very small areas. As a gas ClO2 will completely and evenly fill any space, giving it unmatched distribution and diffusion.

 

ClO2 is much smaller than other particles and molecules. Because of its size, ClO2 is a stronger oxidizer and works at much lower concentrations.  Because ClO2 works at much lower concentrations, it is also less corrosive.

 

As a true gas, ClO2 is able to contact organisms wherever they are located and penetrate into tight, hidden or difficult to reach areas, including microscopic cracks and crevices.

 


Pages
  • Thank You!
  • Blog
  • Referral Program
  • Terms and Conditions
  • Become an Affiliate
  • Product Index
  • Category Index

Mailing List

Ooop! The email you entered isn't valid.
WooHoo! You subscribed successfully.
Ok! You're unsubscribed.

Copyright ProKlean Services. All Rights Reserved. Web Store Software by 3DCart.

TOP

Menu Links

Categories

Store Search